常用拉普拉斯变换

(1) 序号  拉氏变换 F(s) 时间函数 f(t)11δ(t)211e5δT(t)=n=0δ(tnT)31s1(t)41s2t51s3t2261sn+1tnn!71s+aeat81(s+a)2teat9as(s+a)1eat10ba(s+a)(s+b)eatebt11ωs2+ω2sinωt12ss2+ω2cosωt13ω(s+a)2+ω2eatsinωt14s+a(s+a)2+ω2eatcosωt151s(1/T)lnaat/T

齐次性 L[af(t)]=aF(s)

叠加性 L[f1(t)±f2(t)]=F1(s)±F2(s)

微分定理一般形式:

(2)L[df(t)dt]=sF(s)f(0)L[d2f(t)dt2]=s2F(s)sf(0)f(0)L[dnf(t)dtn]=snF(s)k=1nsnkf(k1)(0)f(k1)(t)=dk1f(t)dtk1

微分定理(当初始条件为0的时候):

(3)L[dnf(t)dtn]=snF(s)

积分定理一般形式:

(4)L[f(t)dt]=F(s)s+[f(t)dt]t0sL[f(t)(dt)2]=F(s)s2+[f(t)dt]t0s2+[f(t)(dt)2]t0sL[f(t)(dt)n]=F(s)sn+k=1n1snk+1[f(t)(dt)n]t0

积分定理(当初始条件为0的时候):

(5)L[f(t)(dt)n]=F(s)sn$$

电感电容

(6)UL=Ldi dtCduC dt=i

常用z变换

image-20240705164132783